Scanning SQUID susceptometers with sub-micron spatial resolution.

نویسندگان

  • John R Kirtley
  • Lisa Paulius
  • Aaron J Rosenberg
  • Johanna C Palmstrom
  • Connor M Holland
  • Eric M Spanton
  • Daniel Schiessl
  • Colin L Jermain
  • Jonathan Gibbons
  • Y-K-K Fung
  • Martin E Huber
  • Daniel C Ralph
  • Mark B Ketchen
  • Gerald W Gibson
  • Kathryn A Moler
چکیده

Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples.

We have fabricated and characterized micro-SQUID susceptometers for use in low-temperature scanning probe microscopy systems. The design features the following: a 4.6 mum diameter pickup loop; an integrated field coil to apply a local field to the sample; an additional counterwound pickup-loop/field-coil pair to cancel the background signal from the applied field in the absence of the sample; m...

متن کامل

New Approach of Laser-SQUID Microscopy to LSI Failure Analysis

We have proposed and successfully demonstrated a two step method for localizing defects on an LSI chip. The first step is the same as a conventional laser-SQUID (L-SQUID) imaging where a SQUID and a laser beam are fixed during LSI chip scanning. The second step is a new L-SQUID imaging where a laser beam is stayed at the point, located in the first step results, during SQUID scanning. In the se...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution.

We demonstrate a powerful and practical spectral interferometer with near-field scanning microscopy (NSOM) probes for measuring the spatiotemporal electric field of tightly focused ultrashort pulses with high spatial and spectral resolution. Our measurements involved numerical apertures as high as 0.44 and yielded the spatiotemporal field at and around the foci produced by two microscope object...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 87 9  شماره 

صفحات  -

تاریخ انتشار 2016